Multi-dimensional Arrays with Levels

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Searching monotone multi-dimensional arrays

In this paper we investigate the problem of searching monotone multi-dimensional arrays. We generalize Linial and Saks’ search algorithm [2] for monotone 3-dimensional arrays to d-dimensions with d ≥ 4. Our new search algorithm is asymptotically optimal for d = 4.

متن کامل

Probabilistic Models for Incomplete Multi-dimensional Arrays

In multiway data, each sample is measured by multiple sets of correlated attributes. We develop a probabilistic framework for modeling structural dependency from partially observed multi-dimensional array data, known as pTucker. Latent components associated with individual array dimensions are jointly retrieved while the core tensor is integrated out. The resulting algorithm is capable of handl...

متن کامل

Einstein summation for multi-dimensional arrays

One of the most common data abstractions, at least in scientific computing, is the multi-dimensional array. A numerical algorithm may sometimes conveniently be expressed as a generalized matrix multiplication, which computes a multi-dimensional array from two other multi-dimensional arrays. By adopting index notation with the Einstein summation convention, an elegant tool for expressing general...

متن کامل

Searching On Multi-Dimensional Arrays with Partial Order

In this paper we investigate the problem of searching on d-dimensional arrays with partial order. We generalize Linial and Saks’ search algorithm [2] for 3 dimension to arbitrary dimension d. Our new algorithms require at most d d−1 n + O(n) comparisons. It is optimal for d = 4.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Proceedings in Theoretical Computer Science

سال: 2020

ISSN: 2075-2180

DOI: 10.4204/eptcs.317.4